微積分問題 請大家幫幫忙

2011-05-16 5:01 am
1.lim x趨近無限大 (x^(3/2))*((x+2)^1/2-2(x+1)^(1/2)+x^(1/2))
2.Let f(x) be a differentiable function on R satisfying
f(x^2)=1+((f(y)*(1+tany))從0積分到x^2)
for all x屬於R Then f(pi)=???

請大家幫幫忙??

回答 (1)

2011-05-16 7:13 am
✔ 最佳答案
1. 令 t= 1/x, 則
原limit= lim(t->0) [√(1+2t) - 2√(1+t) +1]/t^2
=lim(t->0) [ 1+ t - t^2 /2 +... - 2(1+ t/2- t^2/8)+ 1]/t^2
=lim(t->0) [ (-1/4)t^2+...]/t^2
= -1/4
Note: (1+x)^a= 1+ax+a(a-1)/2 x^2 + ..., for |x|<1

2.
原式x^2改為t, 得 f(t)=1+∫[0~t] [f(y)(1+tany) dy]
則 f(0)=1, 且
f'(t)= f(t)(1+tant), 即f'(t)/f(t)= 1+ tant
對t積分得 ln|f(t)| = t+ ln|sect|+c
則 f(t)=C e^t* sect, 又f(0)=1, 則 f(t)=e^t * sect
令 t=π, 故 f(π)= - e^π


收錄日期: 2021-05-04 00:47:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110515000016KK09551

檢視 Wayback Machine 備份