(基本)積分問題一條

2011-05-15 10:44 pm
麻煩各位幫我解答以下的問題!

圖片參考:http://imgcld.yimg.com/8/n/HA00882460/o/101105150497713869713660.jpg

更新1:

有部骤吗?

回答 (3)

2011-05-16 7:01 am
✔ 最佳答案
設w=cos(2π/5)+i sin(2π/5), p=2π/5, q=4π/5, 則w^5=1 且
x^5+1=(x+1)(x+w)(x+w^2)(x+w^3)(x+w^4)
5/(x^5+1)=(partial fraction)
= 1/(x+1) + w/(x+w) + w^4/(x+w^4) + w^2/(x+w^2) + w^3/(x+w^3)
=1/(x+1)+ (2xcosp+2)/(x^2+2xcosp+1) + (2xcosq+2)/(x^2+2xcosq+1)
=1/(x+1)+2[cosp(x+cosp)+(sinp)^2]/[(x+cosp)^2+(sinp)^2]
+2[cosq(x+cosq)+(sinq)^2]/[(x+cosq)^2+(sinq)^2]

∫ 5/(x^5+1) dx=ln|x+1|+cosp ln(x^2+2xcosp+1)+ 2sinp arctan[(x+cosp)/sinp]
+cosq ln(x^2+2xcosq+1)+2sinq arctan[(x+cosq)/sinq]+C
∫ dx/(x^5+1)
=(1/5)ln|x+1|+(1/5)cosp ln(x^2+2xcosq+1)+(2/5)sinp arctan[(x+cosp)/sinp]
+(1/5)cosq ln(x^2+2xcosq+1)+(2/5)sinq arctan[(x+cosq)/sinq]+C
2011-05-16 7:06 am
很強很暴力

    
2011-05-16 1:12 am


收錄日期: 2021-05-04 01:00:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110515000010KK04977

檢視 Wayback Machine 備份