✔ 最佳答案
Consider p(-x) = f(-x) - f(x) = -p(x)
We have p(x) is an odd function and therefore:
∫ (x = -a → a) p(x) dx = ∫ (x = -a → 0) p(x) dx + ∫ (x = 0 → a) p(x) dx
For ∫ (x = -a → 0) p(x) dx, we sub u = -x and then du = -dx.
When x = 0, u = 0 and when x = -a, u = a. Hence:
∫ (x = -a → 0) p(x) dx = - ∫ (u = a → 0) p(-u) du
= ∫ (u = 0 → a) p(-u) du
= - ∫ (x = 0 → a) p(x) dx
Finally:
∫ (x = -a → a) p(x) dx = ∫ (x = -a → 0) p(x) dx + ∫ (x = 0 → a) p(x) dx
= - ∫ (x = 0 → a) p(x) dx + ∫ (x = 0 → a) p(x) dx
= 0