inequality

2011-05-01 9:26 pm
Consider two quadratic functions f(x) = kx^2 + 10x - 5 and g(x) = 5x^2 + kx + k , where k > 0.

(a) Find the range of possible values of k such that f(x) ≦ g(x) for all real values of x.

(b) If the value of k found in (a) is an integer , find the possible values of k.


唔該教我啊 唔識做> <
更新1:

書既答案係 (a) 0 < k ≦ 4 (b) 1 , 2 , 3 , 4

更新2:

書既答案係 (a) 0 < k ≦ 4 (b) 1 , 2 , 3 , 4

更新3:

書既答案係 (a) 0 < k <= 4 (b) 1 , 2 , 3 , 4

回答 (1)

2011-05-01 9:49 pm
✔ 最佳答案
(a) f(x) ≦ g(x)

kx^2 + 10x - 5 ≦5x^2 + kx + k , where k > 0.

(5 - k)x^2 + (k - 10)x + (k + 5) > = 0

So, b^2 - 4ac <= 0 and 5 - k > = 0

For (k - 10)^2 - 4(5 - k)(k + 5) < = 0

k^2 - 20k + 100 + 4k^2 - 100 <= 0

k^2 <=4

-2 <= k <= 2

(b) k = -2,-1,0,1,2

2011-05-01 13:50:51 補充:
Sorry it should be k^2 - 4k <= 0

0 <= k <= 4

(b) 0,1,2,3,4

2011-05-01 18:33:34 補充:
當然書的答案是對的。這是因為 k > 0. 這些是minor mistakes 請見諒。


收錄日期: 2021-04-26 19:18:10
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110501000051KK00518

檢視 Wayback Machine 備份