問一題微積分題目?10p (Lagrage multipli

2011-05-02 4:19 am
Maximise
Objective Function f(x,y)=開根號的6-x^2-y^2
Constraint x+y-2=0

偏微分遇到根號就覺得怪怪的

一直解不出x,y...

回答 (2)

2011-05-11 8:55 am
✔ 最佳答案
法1:
√(6-x^2-y^2)極大值產生時, 6-x^2-y^2也是極大值
故設F(x,y, t)=(6-x^2-y^2)+t(x+y-2)
∂F/∂x =0, -2x+t=0
∂F/∂y =0, -2y+t=0
∂F/∂t =0, x+y-2=0, 故x=y=1

法2:硬算
設F(x,y,t)=√(6-x^2-y^2) + t(x+y-2)
∂F/∂x =0, -x/√(6-x^2-y^2) +t=0
∂F/∂y =0, -y/√(6-x^2-y^2)+ t=0
得 t= x/√(6-x^2-y^2) = y/√(6-x^2-y^2), 故 x=y
代入x+y-2=0 or ∂F/∂t=0, 故 x=y=1

由幾何圖形知 x=y=1時 f(x,y)=√(6-x^2-y^2) = 2為最大值
2011-05-02 10:54 am
f(x,y)=開根號的6-x^2-y^2

[f(x,y)]^2=6-x^2-y^2
最大值在相同的地方。
如果不想算根號的偏微分,不仿用[f(x,y)]^2=6-x^2-y^2
求出最大值在相同的地方,帶入f(x,y)=開根號的6-x^2-y^2
即可

2011-05-02 03:01:58 補充:
эf(x,y)/эx=э√ (6-x^2-y^2)/эx
{ chain rule }
=1/[2√ (6-x^2-y^2)]*э (6-x^2-y^2)/эx
=1/[2√ (6-x^2-y^2)]*(-2x)
= - x/√ (6-x^2-y^2).
其他的請自己練習。
ANS : эf(x,y)/эy=э√ (6-x^2-y^2)/эy
= - y/√ (6-x^2-y^2).


收錄日期: 2021-05-04 00:59:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110501000010KK08640

檢視 Wayback Machine 備份