中二 三角形問題!!!急!!!20點!!!

2011-05-01 4:23 am
1. 求sin∮和sin∮的值 tan∮=2


2. 已知其中一個三角比的值,求其中一個三角比的值

cos∮=√11/6


3. 已知cos∮=√11/6,求sin∮和cos∮的值
4. 已知tan∮=4/5,求sin∮*cos∮的值


5. 如果tan∮=3,求7cos∮-3cos∮/2cos∮的值
更新1:

急!!差呢5題!!!thx

更新2:

第3條應該係求sin∮和tan∮

更新3:

第3條應該係求sin∮和tan∮

回答 (2)

2011-05-02 12:10 am
✔ 最佳答案
你好~~~

1) tan∮= 2

(tan∮)^2 = 2^2

(sin∮)^2 / (cos∮)^2 = 4

(sin∮)^2 = 4(cos∮)^2

(sin∮)^2 = 4[1 - (sin∮)^2]

(sin∮)^2 = 4 - 4(sin∮)^2

(sin∮)^2 + 4(sin∮)^2 = 4

5(sin∮)^2 = 4

(sin∮)^2 = 4 / 5

sin∮ = √(4 / 5)

sin∮ = 2 / √5

(sin∮)^2 = 4 / 5

1 - (cos∮)^2 = 4 / 5

(cos∮)^2 = 1 / 5

cos∮ = √(1 / 5)

cos∮ = 1 / √5

2) cos∮= √(11/6)

(cos∮)^2 = 11 / 6

1 - (sin∮)^2 = 11 / 6

(sin∮)^2 = 5 / 6

sin∮ = √(5 / 6)

3) 應該是已知 tan∮ = √(11 / 6) 吧?

tan∮ = √(11 / 6)

(tan∮)^2 = 11 / 6

(sin∮)^2 / (cos∮)^2 = 11 / 6

(sin∮)^2 = 11(cos∮)^2 / 6

6(sin∮)^2 = 11[1 - (sin∮)^2]

6(sin∮)^2 = 11 - 11(sin∮)^2

17(sin∮)^2 = 11

(sin∮)^2 = 11 / 17

sin∮ = √(11 / 17)

(sin∮)^2 = 11 / 17

1 - (cos∮)^2 = 11 / 17

(cos∮)^2 = 6 / 17

cos∮ = √(6 / 17)

4) tan∮ = 4 / 5

sin∮ / cos∮ = 4 / 5

(sin∮)^2 / (cos∮)^2 = (4 / 5)^2

25(sin∮)^2 = 16(cos∮)^2

25(sin∮)^2 = 16[1 - (sin∮)^2]

25(sin∮)^2 = 16 - 16(sin∮)^2

41(sin∮)^2 = 16

(sin∮)^2 = 16 / 41

sin∮= √(16 / 41)

sin∮= 4 / √41

(sin∮)^2 = 16 / 41

1 - (cos∮)^2 = 16 / 41

(cos∮)^2 = 25 / 41

cos∮= 5 / √41

sin∮ * cos∮= 4 / √41 * 5 / √41

= 20 / 41

5) tan∮= 3

sin∮ / cos∮ = 3

(sin∮)^2 / (cos∮)^2 = 9

(sin∮)^2 = 9(cos∮)^2

(sin∮)^2 = 9[1 - (sin∮)^2]

(sin∮)^2 = 9 - 9(sin∮)^2

10(sin∮)^2 = 9

(sin∮)^2 = 9 / 10

sin∮= 3 / √10

(sin∮)^2 = 9 / 10

1 - (cos∮)^2 = 9 / 10

(cos∮)^2 = 1 / 10

cos∮ = √(1 / 10)

cos∮ = 1 / √10

但你的問題好似怪怪的,你給了你 sin∮ 及 cos∮ 的值後,你只要代回去即可~

還有,其實這幾條可以畫一個直角三角形,代回所有邊的數,用勾股定理來求回未知邊,輕鬆的找回答案~~

希望可以幫到你~~~~~
參考: Yogi
2011-05-01 4:32 am
問題: new!!!中二 三角形問題!!! 三角形is about the 3角 the cos and tan.


收錄日期: 2021-04-23 22:42:49
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110430000051KK01250

檢視 Wayback Machine 備份