高微 證明 line & surface integrals

2011-04-29 8:42 am
1.Prove the following integration-by-parts formula for triple integrals:
∫∫∫(範圍為R) f*(∂g/∂x)dV =
- ∫∫∫(範圍為R) g*(∂f/∂x)dV + ∫∫(範圍為∂R) f*g*n(下標x)dA
where n(下標x) is the x-component of the unit outward normal to ∂R.
(Of course, similar formulas also hold with x replaced by y and z)


麻煩高手們!!! 謝謝!!!!

回答 (2)

2011-04-30 12:46 am
✔ 最佳答案
考慮向量函數(fg, 0, 0), 由divergence theorem
∫∫_∂R (fg, 0, 0)∙n dA = ∫∫∫_R div(fg, 0, 0) dV
得 ∫∫_∂R f*g*nx dA = ∫∫∫_R ∂(fg)/∂x dV
即 ∫∫_∂R f*g*nx dA= ∫∫∫_R f(∂g/∂x)+g(∂f/∂x) dV
移項,故得證
2011-04-30 1:33 am

圖片參考:http://imgcld.yimg.com/8/n/AC06918685/o/101104290033613869669250.jpg


圖片參考:http://imgcld.yimg.com/8/n/AC06918685/o/101104290033613869669261.jpg

Please draw a cube and a sphere and other bodys, maybe you will understand what my mean.

2011-04-29 17:45:31 補充:
The Answer of 煩惱即是菩提 ( 知識長 ) is better than mine.


收錄日期: 2021-05-04 00:41:24
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110429000010KK00336

檢視 Wayback Machine 備份