Limit URGENT!~~

2011-04-24 4:40 am

回答 (2)

2011-04-24 5:39 am
✔ 最佳答案
1. lim(x->0)_[ (1+x)^(1/2)-(1-x)^(1/2)]/[(1+x)^(1/3)-(1-x)^(1/3)]Sol
lim(x->0)_[ (1+x)^(1/2)-(1-x)^(1/2)]/[(1+x)^(1/3)-(1-x)^(1/3)]
=lim(x->0)_[(1/2)(1+x)^(-1/2)+(1/2)(1-x)^(-1/2)]
/[(1/3)(1+x)^(-2/3)+(1/3)(1-x)^(-2/3)]
=1/(2/3)
=3/2

2.y=x+(1/x^2)=(x^3+1)/x^2
dy/dx
=lim(h->0)_{[(x+h)^3+1]/(x+h)^2]-(x^3+1)/x^2}/h
=lim(h->0)_{[x^2(x+h)^3+x^2]-[(x+h)^2(x^3+1)]/[x^2(x+h)^2}/h=lim(h->0)_{[x^2(x^3+3hx^2+3h^2x+h^3)+x^2]-[(x^2+2xh+h^2)(x^3+1)]
/[x^2(x+h)^2}/h
=lim(h->0)_{[(x^5+3hx^4+3h^2x^3+h^3x^2+x^2)-
(x^5+x^2+2hx^4+2hx+h^2x^3+h^2)]/[x^2(x+h)^2]}
=lim(h->0)_{(hx^4+2h^2x^3+h^3x^2-2hx-h^2)/[x^2(x+h)^2]}/h
=lim(h->0)_{(x^4+2hx^3+h^2x^2-2x-h)/[x^2(x+h)^2]}
=(x^4-2x)/[x^2(x)^2]
=1-2x^(-3)




2011-04-24 21:49:56 補充:
d[ (1+x)^(1/2)-(1-x)^(1/2)]/dx
=d (1+x)^(1/2)/dx-d(1-x)^(1/2)]/dx
=[d (1+x)^(1/2)/d(1+x)]*[d(1+x)/dx]-[d(1-x)^(1/2)/d(1-x)]*[d(1-x)/dx]]
=(1/2)(1+x)^(-1/2)-(1/2)(1-x)^(-1/2)*(-1)
=(1/2)(1+x)^(-1/2)+(1/2)(1-x)^(-1/2)
2011-04-24 6:41 am
看不懂這個步驟q.1 =lim(x->0)_[(1/2)(1+x)^(-1/2)+(1/2)(1-x)^(-1/2)]
/[(1/3)(1+x)^(-2/3)+(1/3)(1-x)^(-2/3)]
可否解釋一下 thanks a lot!~


收錄日期: 2021-04-13 17:57:16
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110423000051KK01150

檢視 Wayback Machine 備份