F4 M2 Trigonometry

2011-04-22 7:52 am
1. If cos ß and csc ß are the roots of x^2 + kx - 3 = 0, where
π/2 < ß < π , find the value of k . Express your answer in surd form.
(Ans: -7√10 / 10)

2. If sinA + sinB = k/2 , sinAsinB = -k^2/2
a) Find sinA and sinB in terms of k.
(Ans: sinA = -k/2 , sinB = k OR sinA = k , sinB = -k/2)

b)Find the range of k so that both A and B are real.
(Ans: -1≤k≤1)

3. f(ß) = (cosß)^2 + sinß -2. Find the ranges of values of f(ß)
(Ans: -3≤f(ß)≤-3/4)

Please help me solve the problems, thz a lot~~~~~

回答 (2)

2011-04-22 8:52 am
✔ 最佳答案
1. If Cos ß and Csc ßare the roots of x^2 + kx -3 = 0,where π/2 < ß <π,find the value of k . Express your answer in surd form.
SolCos ß*Csc ß=Cot ß=-3π/2 < ß < πCsc ß=√10,Cos ß=-3/√10Cos ß+Csc ß=-kk=-Cos ß-Csc ß=3/√10-√10=3√10/10-10√10/10=-7√10/10

2. If SinA +SinB = k/2,SinASinB=-k^2/ 2
a) Find SinA and SinB in terms of k.
Sol
SinB=k/2-SinA
SinASinB=SinA(k/2-SinA)=kSinA/2-Sin^ 2 A =-k^2/2
-2Sin^ 2 A +kSinA+k^2=0
2Sin^ 2 A-kSinA-k^2=0
(2SinA+k)(SinA-k)=0
SinA=-k/2 or SinA=k
(1) SinA=-k/2,SinB=k
(2) SinA=k,SinB=-k/2

b)Find the range of k so that both A and B are real.
Sina=-k/2
-1<=k/2<=1
-2<=k<=2---------------(1)
SinB=k
-1<=k<=1---------------(2)
綜合(10(2)
-1<=x<=1

3. f(ß) = (Cosß)^2 +Sinß-2.Find the ranges of values of f(ß)
Sol
(Cosß)^2 +Sinß-2
=1-Sin^2 ß+Sinß-2
=-(Sin^2 ß-Sinß)-1
=-(Sin^2 ß-Sinß+1/4)-1+1/4
=-(Sin ß-1/2)^2-3/4
-1<=Sin ß<=1
-3/2<=Sin ß-1/2<=1/2
0<=(Sin ß-1/2)^2<=9/4
-9/4<=-(Sin ß-1/2)^2<=0
-3<=-(Sin ß-1/2)^2-3/4<=-3/4
-3<=f( ß)<=-3/4


2011-04-22 8:32 am
第一題Ans係咪-7√10 / /30 ?!


收錄日期: 2021-04-25 17:04:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110421000051KK01563

檢視 Wayback Machine 備份