limit與積分

2011-04-11 6:45 am
Find lim(t->0) ∫[0~t] dx/√(cosx - cost) =?

圖片參考:http://imgcld.yimg.com/8/n/AE03435620/o/101104101139413869587780.jpg
更新1:

連續四題,其實都是相關題,過程為要!

回答 (5)

2011-04-23 10:42 am
✔ 最佳答案
由於 integrand 是 even, nonnegative function, 因此除非極限值是 0,
否則 t>0 與 t<0 將產生一正一負的不同結果. 也就是說: 雙邊極限將
不存在.

只考慮 t>0 (考慮右邊極限).

做個變數代換: u=t-x, 則
∫_0^t dx/√(cos(x)-cos(t)) = ∫_0^t du/√cos(t-u)-cos(t))

cos(t-u) = cos(t)+u sin(t) - u^2 cos(t)/2 - u^3 sin(t)/6 + u^4 cos(t)/24 + ...



cos(t-u) - cos(t) = [u sin(t) - u^2 cos(t)/2].[1-(u^2/6)+u^3 cot(t)/24 + O(u^4)]
= (cos(t)/2)[(tan(t))^2-(u-tan(t))^2].(1-u^2/6+u^3 cot(t)/24+O(u^4))

當 t 夠小時, 1-u^2/6+u^3 cot(t)/24+O(u^4) ≒ 1, 或更明確地說,
1 ≦ 1/√(1-u^2/6+u^3 cot(t)/24+O(u^4)) ≦ 1/√(1-t^2) → 1 當 t→0.

因此,
lim ∫_0^t dx/√(cos(x)-cos(t)) = lim ∫_0^t du/√{(cos(t)/2)[(tan(t))^2-(u-tan(t))^2]}
= lim √(2/cos(t)).{arc sin(t/tan(t)-1) - arc sin(-1)} = √2.(π/2) = π/√2.





2011-04-11 7:10 am
x介於0, t之間, t趨近於0, 定義域有問題嗎?

2011-04-26 19:50:26 補充:
這題沒這麼麻煩啦!(故只給5點)
2011-04-22 11:12 am
2011-04-11 7:10 am
Pi/ 2^0.5

對吧?
2011-04-11 7:06 am
f(x)=1/√(cosx-cost) 定義域?


收錄日期: 2021-05-04 01:00:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110410000010KK11394

檢視 Wayback Machine 備份