dfinite integration

2011-04-08 4:58 am
If f(a-x)=-f(x), show that ∫(fx)dx [0,a] =0

回答 (1)

2011-04-08 5:52 am
✔ 最佳答案
If f(a-x)=-f(x), show that ∫(fx)dx [0,a] =0
f(a-x) = -f(x)
Integrate both side,
∫f(a-x)dx = -∫f(x)dx
-∫f(a-x)d(a-x) = -∫f(x)dx
∫f(a-x)d(a-x) = ∫f(x)dx

Let g(x) = ∫f(x)dx
g(a-x) = g(x)
Put x = a, g(a-a) = g(a) => g(a) = g(0)
Hence, ∫[0,a]f(x)dx = 0
參考: Hope the solution can help you^^”


收錄日期: 2021-04-20 00:27:15
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110407000051KK01139

檢視 Wayback Machine 備份