20點(Amaths/PureMaths高手請進)D arc

2011-04-06 3:26 am
請問點樣計
Differential arcsin√1-x2
x2 即係 x既2次方...

唔該連埋 steps + answer
唔該晒 高手 ~
更新1:

唔好意思打溜左...條問題係要你用 chain rule... 問題係 Apply the chain rule to find the differential arcsin√1-x2

更新2:

請問你地兩個係唔係用緊 Chain rule 計? 問題要我用 chain rule 計 Apply the chain rule to find the differential arcsin√1-x2

更新3:

兩位師兄, 介唔介意用小畫家 / Microsoft Word 做一次 send 去我 email 到? 比較難睇係依到.../_\ 唔該晒...thanks... [email protected]

回答 (2)

2011-04-06 4:37 am
✔ 最佳答案
(arcsin x)' = 1/√(1 - x^2)

[arcsin √(1 - x^2)]'

= {1/√(1 - [√(1 - x^2)]^2)} [√(1 - x^2)]'

= (1/x)[-x/√(1 - x^2)]

= -1/√(1 - x^2)

2011-04-06 4:12 am
y = sin^-1 √(1-x^2)
siny = √(1-x^2)/1
cosy = x/1 = x
secy = 1/x
siny = √(1-x^2) ---------(**)
Differentiate both sides of (**),
cosy * dy/dx = (1/2)(1-x^2)^(-1/2) (-2x) = -x/√(1-x^2)
dy/dx = -x/√(1-x^2) * sec y
dy/dx = -1/√(1-x^2)



2011-04-05 21:22:44 補充:
問題要我用 chain rule 計 << 我絕對有用
siny = √(1-x^2)
dsiny/dy * dy/dx = d√(1-x^2) /d(1-x^2) * d(1-x^2)/dx
參考: Hope the solution can help you^^”


收錄日期: 2021-04-26 14:43:45
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110405000051KK01050

檢視 Wayback Machine 備份