mathematical induction

2011-04-05 6:48 am
By the principle of mathematical induction, the proposition P(n)

1*2+2*3+3*4+...+n(n+1) = 1/3 *n (n+1)(n+2)

when n=k+1

LHS = 1*2+2*3+...+k(k+1)+(k+1)(k+2)

=1/3 *k (k+1)(k+2)+(k+1)(k+2)

and so on

請問為何1*2+2*3+...+k(k+1)+(k+1)(k+2) 會變成1/3 *k (k+1)(k+2)+(k+1)(k+2)
的呢?

當中的 "..."怎樣solve呢
謝謝
更新1:

我知道你懂得計,但為何1*2+2*3+...+k(k+1)+(k+1)(k+2) 會變成1/3 *k (k+1)(k+2)+(k+1)(k+2) 的呢? 謝謝

回答 (1)

2011-04-05 7:01 am
✔ 最佳答案

圖片參考:http://i.imgur.com/xoPzR.gif


http://i.imgur.com/xoPzR.gif

2011-04-05 12:09:35 補充:
因為

1*2+2*3+3*4+...+k(k+1) = 1/3 *k (k+1)(k+2)

所以

1*2+2*3+3*4+...+k(k+1)+(k+1)(k+2) = 1/3 *k (k+1)(k+2) +(k+1)(k+2)

2011-04-05 13:02:10 補充:
http://i.imgur.com/yeQV9.gif


收錄日期: 2021-04-23 20:48:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110404000051KK01375

檢視 Wayback Machine 備份