1*2+2*3+3*4+...+n(n+1) = 1/3 *n (n+1)(n+2)
when n=k+1
LHS = 1*2+2*3+...+k(k+1)+(k+1)(k+2)
=1/3 *k (k+1)(k+2)+(k+1)(k+2)
and so on
請問為何1*2+2*3+...+k(k+1)+(k+1)(k+2) 會變成1/3 *k (k+1)(k+2)+(k+1)(k+2)
的呢?
當中的 "..."怎樣solve呢
謝謝
更新1:
我知道你懂得計,但為何1*2+2*3+...+k(k+1)+(k+1)(k+2) 會變成1/3 *k (k+1)(k+2)+(k+1)(k+2) 的呢? 謝謝