証明(1)C(n,0)+(...=【1/(n+1)】*【2^

2011-04-02 8:55 am
証明
(1)C(n,0)+(1/2)*C(n,1)+(1/3)*C(n,2)+...+【1/(n+1)】*C(n,n)=【1/(n+1)】*【2^(n+1)-1】(2) C(n,0)-(1/2)*C(n,1)+(1/3)*C(n,2)-...+(-1)^n【1/(n+1)】*C(n,n)=【1/(n+1)】

回答 (1)

2011-04-02 10:02 am
✔ 最佳答案
(1) Notice that

(1 + x)^n = Σ (nCk)x^k

Integrate both sides w.r.t x from 0 to 1

[2^(n + 1) - 1]/(n + 1) = Σ (nCk)/(k + 1)

(2) (1 + x)^n = Σ (nCk)x^k

Integrate both sides w.r.t x from -1 to 0

1/(n + 1) = Σ (nCk)(-1)^k / (k + 1)

Expressed in full form

C(n,0)-(1/2)*C(n,1)+(1/3)*C(n,2)-...+(-1)^n【1/(n+1)】*C(n,n)=【1/(n+1)】


收錄日期: 2021-04-26 14:06:14
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110402000016KK00440

檢視 Wayback Machine 備份