關於三角形的一個問題
1.已知亼ABC的面積是18cm2且A是鈍角。若c=6 cm 及b= 6√2,求A
2.在亼ABC中,a=20cm ,b=27cm ,c=25cm
(a) 利用餘弦公式求B,並由此求亼ABC的面積
(b) 利用希羅公式,求亼ABC的面積
回答 (3)
1.
亼ABC = 18
(1/2)bc sinA = 18
(1/2)(6√2)(6) sinA = 18
sinA = √2/2
A = 45°(rej.)
or A=135°(Ans.) 2.
(a) CosB = (a^2 + c^2 - b^2) / 2ac
CosB = (400 + 625 - 729) / (2 * 20 * 25)
CosB = 37/125
B = 72.7825°亼ABC = (1/2) ac sinB
= (1/2) 20 * 25 √(1 - cos^2 B)
= 250 √(1 - 37^2 /125^2)
= 250 √(14256/15625)
= 250 (36/125)√11
= 72√11
(b)
s = (a+b+c)/2 = (20+27+25)/2 = 36
亼ABC = √s(s - a)(s - b)(s - c)
= √ 36(36 - 20)(36 - 27)(36 - 25)
= √ (36(16)(9)(11))
= 72√11
參考: By me
1)
Heron's formula:
sqrt[s(s-a)(s-b)(s-c)]=18
...
a=6
2)
(b)
亼abc
=sqrt[s(s-a)(s-b)(s-c)]
=sqrt[36(36-20)(36-27)(36-25)]
=6sqrt[16*9*11]
=6*4*3sqrt[11]
=72sqrt[11]
2011-03-29 19:06:35 補充:
2)
(a)
b^2=a^2+c^2-2ac*cos(B)
729=400+625-1000cos(B)
296-1000cos(B)=0
296=1000cos(B)
0.296=cos(B)
B=2*pi*n土1.27029,n is a element of {Z}
參考: Hope I can help you!
收錄日期: 2021-04-13 17:53:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110329000051KK00685
檢視 Wayback Machine 備份