F.1 Maths題,急 20 marks

2011-03-29 9:53 pm
If (xy^2 X x^ny^2)^3=x^18y^4m where m and n are positive intgers,find the values of m and n.
答案 m=3,n=5

我要詳盡的steps! thx!
更新1:

題目可能唔清楚,打多次 If (x乖以y^2乖以 x^n乖以y^2)^3=x^18y乖以^4m where m and n are positive intgers,find the values of m and n.

回答 (1)

2011-03-29 10:19 pm
✔ 最佳答案
(x y^2 x^n y^2)^3 = x^18 y^4m
=> (x^1 y^2 x^n y^2)^3 = x^18 y^4m
=> (x^(1+n) y^(2+2))^3 = x^18 y^4m
=> (x^(1+n) y4)^3 = x^18 y^4m
=> x^3(1+n) y^12 = x^18 y^4m

Comparing the powers of x, then
3(1+n) = 18
=> 1+n = 6
=> n = 5

Comparing the powers of y, then
12 = 4m
=> m = 3


收錄日期: 2021-04-23 21:08:41
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110329000051KK00481

檢視 Wayback Machine 備份