F.5 Maths

2011-03-21 7:08 am
Evaluate the following integral.


圖片參考:http://imgcld.yimg.com/8/n/HA00002921/o/701103200161113873392710.jpg

回答 (2)

2011-03-21 8:08 am
✔ 最佳答案
Let x = tan u, dx=sec^2 u du
S [x/V(x^2+1)] dx
= S (tan u sec^2 u du) / V(tan^2 u + 1)
= S (tan u sec^2 u du) / V(sec^2 u)
= S (tan u sec^2 u du) / sec u
= S (tan u sec u du)
= sec x +C
= V(x^2+1) +C

S (V3, -V3) [x/V(x^2+1)] dx
=V(3^2+1) +C - V[(-3)^2+1] +C
= 0
2011-03-21 7:34 am
Fairly speaking, since f(x) = x/√(x^2 + 1) is an odd function, i.e f(-x) = -f(x). The integral of ∫ (-b -> b) f(x) dx (where b is a constant) should equal to 0 and we don't need to do any calculation further.


收錄日期: 2021-04-26 14:06:35
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110320000051KK01611

檢視 Wayback Machine 備份