Trigonometry
ABCD is a quadrilateral with AB=BC=CD. Angle BAD = 135 degrees and angle CDA = 75 degrees. Prove that AC=AB.
回答 (3)
ABCD is a quadrilateral with AB=BC=CD.Angle BAD = 135 degrees
and angle CDA = 75 degrees. Prove that AC=AB
Sol
∠BAC=x
AB=BC
∠BCA=x
∠ABC=180度-2x
在△ABC中依正弦定律
AB/Sinx=AC/Sin(180度-2x)
AB/Sinx=AC/Sin((2x)
AB/AC=Sinx/Sin(2x)=1/(2Cosx)
2011-03-20 23:24:00 補充:
在△ACD中
CD/Sin(135度-x)=AC/Sin75度
AB/Sin(135度-x)=AC/Sin75度
AB/AC=Sin(135度-x)/Sin75度
So
1/(2Cosx)=Sin(135度-x)/Sin75度
2CosxSin(135度-x)=Sin75度
Sin75度=[CosxSin(135度-x)+SinxCos(135度-x)]
+[CosxSin(135度-x)-SinxCos(135度-x)]
Sin75度=Sin135度+Sin(135度-x-x)
Sin(135度-2x)=Sin75度-Sin135度
2011-03-20 23:24:24 補充:
=(√6+√2)/4-√2/2
=(√6-√2)/4
135度-2x=15度
x=60度
△ABC為正△
AC=AB
收錄日期: 2021-04-23 23:24:02
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110320000051KK01489
檢視 Wayback Machine 備份