differential calculus question

2011-03-18 7:41 am
(1) If y = (ax^2 + b)^3, find the derivative of y with respect to x, where a and b are constant

(2) Given y = (x^3 + x)^7 , find dy/dx (hint let z=x^3 +x)

(3) Given y = ,
圖片參考:http://imgcld.yimg.com/8/n/HA00193002/o/701103170143713873391540.jpg
find dy/dx (hint let z=x^2 +1)

回答 (1)

2011-03-18 7:56 am
✔ 最佳答案
** The symbol ' means d/dx **

(1)
y = (ax^2 + b)^3
y' = 3(ax^2 +b)^2 * (ax^2+b) '
= 3(ax^2 +b)^2 * (2ax)
=6ax(ax^2+b)^2

(2)
y = (x^3 + x)^7
y' = 7(x^3 +x)^6 * (x^3+x) '
= 7(x^3 +x)^6 * (3x^2+1)
= 7 (3x^2+1) (x^3 +x)^6

(3)
y = sqrt (x^2 +1) = (x^2+1)^(1/2)
y' = (1/2) (x^2+1)^(-1/2) * (x^2+1) '
= (1/2) (x^2+1)^(-1/2) * (2x)
= x (x^2+1)^(-1/2)
= x / sqrt (x^2+1)

You should keep practice using the chain rule until you do not need to use substitution.


收錄日期: 2021-04-13 17:52:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110317000051KK01437

檢視 Wayback Machine 備份