integration
It is given that x^2+2x+4 = [(x+1)^2]+3Hence show that ∫dx/(x^2+2x+4) = √3π/18
回答 (3)
yes...................
2011-03-08 21:46:57 補充:
sorry .... the upper limit is 2
lower limit is 0
∫dx/(x^2+2x+4) = ∫dx/ [(x+1)²+3]
= ∫d(x+1)/[(x+1)²+3]
Put x+1 = √3tanA
= ∫d( √3tanA)/( √3tan²A+3)
=√3 ∫ sec²A dA / [3(tan²A+1)]
= √3/3 ∫dA
=√3/3 A + C
= √3/3 tan^-1 ( x+1 /√3) + C
When the funtion is integrated from -1 to 0,
then the ans. is √3π/18
收錄日期: 2021-04-13 17:51:29
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110308000051KK01294
檢視 Wayback Machine 備份