A Maths CE 06 Q14

2011-03-08 12:13 am

圖片參考:http://imgcld.yimg.com/8/n/HA00149615/o/701103070059113873387640.jpg

Fig: http://img194.imageshack.us/content_round.php?page=done&l=img194/2529/ce06.jpg&via=mupload

Let J be the circle x^2 + y^2 = r^2, where r > 0.a) Suppose that the straight line L: y = mx + c
is a tangent to J.
i) Show that c^2 = r^2 ( m^2 + 1).
ii) If L passes through a point (h, k), show that
(k - mh)^2 = r^2 (m^2 + 1).b) J is inscribed in a triangle PQR ( see the figure). The coordinates of P and R are (7, 4)
and (-5, -5) respectively.
i) Find the radius of J.
ii) Using (a)(ii), or otherwise, find the slope of
PQ.
iii) Find the coordinates of Q.

回答 (2)

2011-03-08 12:48 am
✔ 最佳答案
(a)(i) Sub. y = mx + c into J: x^2 + y^2 = r^2

x^2 + (mx + c)^2 = r^2

(1 + m^2)x^2 + 2mcx + (c^2 - r^2) = 0

Discriminant = 0

4m^2c^2 - 4(1 + m^2)(c^2 - r^2) = 0

m^2c^2 - c^2 + r^2 - m^2c^2 + m^2r^2 = 0

c^2 = r^2(m^2 + 1)

(ii) L passes through (h,k) => k = mh + c

(k - mh)^2 = r^2(m^2 + 1)

(b)(i) P(7,4) R(-5,-5). m = 9/12 = 3/4

Sub. P and m into (k - mh)^2 = r^2(m^2 + 1)

(4 - 21/4)^2 = r^2(9/16 + 1)

25/16 = r^2(25/16)

r = 1

(ii) Sub. P and r = 1 into (k - mh)^2 = r^2(m^2 + 1)

(4 - 7m)^2 = (m^2 + 1)

48m^2 - 56m + 15 = 0

(4m - 3)(12m - 5) = 0

m = 3/4 or 5/12

The slope of PQ is 5/12

(iii) Sub. R and r = 1 into (k - mh)^2 = r^2(m^2 + 1)

(-5 + 5m)^2 = (m^2 + 1)

12m^2 - 25m + 12 = 0

(4m - 3)(3m - 4) = 0

m = 3/4 or 4/3

The slope of PR is 4/3

Let Q(s,t) Then (t - 4)/(s - 7) = 5/12 and (t + 5)/(s + 5) = 4/3

5s = 12t - 13

4s = 3t - 5

s = -7/11 and t = 9/11. Q(-7/11,9/11)




2011-03-08 6:19 am
biii ) 有唔明...

4s = 3t - 5

跟住點計到 s = -7/11 and t = 9/11


收錄日期: 2021-04-26 14:05:05
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110307000051KK00591

檢視 Wayback Machine 備份