Differentiation

2011-03-06 11:28 pm
find the derivatives of the following functions with respect to x from first principles
y=ln5x

回答 (3)

2011-03-06 11:52 pm
✔ 最佳答案
dy/dx

= lim(Δx->0) {ln[5(x + Δx)] - ln5x}/Δx

= lim(Δx->0) {ln[5(x + Δx)/5x]}/Δx

= lim(Δx->0) {ln[1 + Δx/5x]}/Δx

= lim(Δx->0) 1/(5x) {ln[1 + Δx/5x]}/(Δx/5x)

= lim(Δx->0) 1/(5x) {ln[1 + Δx/5x]}^[1/(Δx/5x)]

= lim(Δx->0) 1/(5x) {ln[1 + 1/(5x/Δx)]}^(5x/Δx)

= lim(n->infinity) 1/(5x) {ln[1 + 1/n]}^n

= 1/(5x) lne

= 1/(5x)

2011-03-07 11:19:29 補充:
sorry。

= lim(Δx->0) {ln[1 + Δx/5x]}/Δx

這行的5應該是沒有的。以下那些5x換回x就可以了。答案是1/x
2011-03-07 7:35 am
你個答案錯左喎...我算計啦e家~
2011-03-07 12:14 am
dy/dx

= lim(Δx->0) {ln[5(x + Δx)] - ln5x}/Δx

= lim(Δx->0) {ln[5(x + Δx)/5x]}/Δx

= lim(Δx->0) {ln[1 + Δx/5x]}/Δx

= lim(Δx->0) 1/(5x) {ln[1 + Δx/5x]}/(Δx/5x)

= lim(Δx->0) 1/(5x) {ln[1 + Δx/5x]}^[1/(Δx/5x)]

= lim(Δx->0) 1/(5x) {ln[1 + 1/(5x/Δx)]}^(5x/Δx)

= lim(n->infinity) 1/(5x) {ln[1 + 1/n]}^n

= 1/(5x) lne

= 1/(5x)
參考: up


收錄日期: 2021-04-26 14:05:06
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110306000051KK00762

檢視 Wayback Machine 備份