M 2 maths Trigonometric 40 pts

2011-02-25 6:31 am
Q. Find tan θ, if sin (60°+θ)= cos θ. Ans. : 2-√3
Q 2. If A, B and C are angles of triangle, prove that (tanA/2 tanB/2)+ (tanB/2 tanC/2)+ (tanC/2 tanA/2)=1 Thanks!

回答 (1)

2011-02-26 1:41 am
✔ 最佳答案
1) sin(60°+θ) = cos θsin60° cosθ + cos60° sinθ = cosθsin60° + cos60° tanθ = 1√3/2 + (1/2)tanθ = 1tanθ = 2(1 - √3/2) = 2 - √3 2) tan A/2 tan B/2 + tan B/2 tan C/2 + tan C/2 tan A/2= tan A/2 tan B/2 + (tan C/2) (tan B/2 + tan A/2)= tan A/2 tan B/2 + (tan C/2) [tan (B/2 + A/2)](1 - tan B/2 tan A/2)= tan A/2 tan B/2 + (tan C/2) [tan (π/2 - C/2)](1 - tan B/2 tan A/2)= tan A/2 tan B/2 + (1 - tan B/2 tan A/2)= 1


收錄日期: 2021-04-21 22:19:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110224000051KK01451

檢視 Wayback Machine 備份