diff. both sides w.r.t.x,
lnx +1 =0
lnx=-1
x=1/e
why putting x=1/e to the original equation is wrong?
更新1:
抱歉,自己錯concept.以上做法只係搵出f '(x)=0 , 並非f (x)=0. f(x)=x(lnx)-1 ,for all x>0 f '(x)=lnx+1 ,for all x>0 f "(x)=1/x ,for all x>0 f '(x)=0 iff x=1/e f "(x) >0 ,for all x>0
更新2:
thus,for all x>0, f(x) attains its min. at x=1/e absolute min. value of f(x) = -(1+e)/e ,which is negative. lim(x→+無限) f(x)=+無限 i.e.f(x)=0 has at least one solution. Hence, please help.