✔ 最佳答案
(tan1° + 1) (tan44° + 1) = 2
(tan2° + 1) (tan43° + 1) = 2
(tan3° + 1) (tan42° + 1) = 2
......
(tan22° + 1) (tan23° + 1) = 2
∴ (tan1° + 1) (tan2° + 1) (tan3° + 1)......(tan44° + 1)
= 2^22
至於為何有:
(tan1° + 1) (tan44° + 1) = 2
......
(tan22° + 1) (tan23° + 1) = 2
就是關鍵。
2011-02-22 19:30:49 補充:
根據tan的和角公式:
tan (a+b) = (tan a+tan b)÷(1-tan a × tan b)
設 a + b = 45度
則 tan (a+b) = tan 45度
∴ (tan a + tan b)÷(1-tan a × tan b) = 1
tan a + tan b + tan a × tan b = 1
tan a + tan b + tan a × tan b + 1 = 2
(tan a + 1)(tan b + 1) = 2
得:
(tan1° + 1) (tan2° + 1) (tan3° + 1) ...... (tan43° + 1) (tan44° + 1)
= [(tan1°+ 1)(tan44°+1)] [(tan2°+1)(tan43°+1)]...[(tan22°+1)(tan23°+1)]
= 2^22
(= 4194304)