~tan 連乘式一題~

2011-02-23 2:00 am
求值 :

(tan1° + 1)(tan2° + 1)(tan3° + 1) ...... (tan43° + 1)(tan44° + 1)

(以指數表示。)






回答 (2)

2011-02-23 3:30 am
✔ 最佳答案
(tan1° + 1) (tan44° + 1) = 2
(tan2° + 1) (tan43° + 1) = 2
(tan3° + 1) (tan42° + 1) = 2
......
(tan22° + 1) (tan23° + 1) = 2
∴ (tan1° + 1) (tan2° + 1) (tan3° + 1)......(tan44° + 1)
= 2^22
至於為何有:
(tan1° + 1) (tan44° + 1) = 2
......
(tan22° + 1) (tan23° + 1) = 2
就是關鍵。

2011-02-22 19:30:49 補充:
根據tan的和角公式:
tan (a+b) = (tan a+tan b)÷(1-tan a × tan b)
設 a + b = 45度
則 tan (a+b) = tan 45度
∴ (tan a + tan b)÷(1-tan a × tan b) = 1
tan a + tan b + tan a × tan b = 1
tan a + tan b + tan a × tan b + 1 = 2
(tan a + 1)(tan b + 1) = 2
得:
(tan1° + 1) (tan2° + 1) (tan3° + 1) ...... (tan43° + 1) (tan44° + 1)
= [(tan1°+ 1)(tan44°+1)] [(tan2°+1)(tan43°+1)]...[(tan22°+1)(tan23°+1)]
= 2^22
(= 4194304)
2011-02-23 3:18 am
怎知它們 = 2 ?


收錄日期: 2021-04-11 18:32:51
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110222000051KK00810

檢視 Wayback Machine 備份