limits

2011-02-20 6:12 am
lim x->1 (x+x^2+x^3+...x^n -n) / (x-1)
更新1:

in terms of n

更新2:

how (x+x^2+x^3+...x^n -n) / (x-1) go to (1+2x+3x^2+...nx^(n-1) ) ??

回答 (3)

2011-02-20 6:26 am
✔ 最佳答案
lim( x->1)_(x+x^2+x^3+...x^n -n) / (x-1) 0/0 type=lim( x->1)_(1+2x+3x^2+...+nx^(n-1))/1=1+2+3+,,,+n=n(n+1)/2
2011-02-20 7:48 pm
You don't know what they are doing if you don't know L'Hopital's Rule.
lim g(x)/f(x) = lim g'(x)/f'(x).
2011-02-20 6:29 am
Treat n as a constant

lim x->1 (x+x^2+x^3+...x^n -n) / (x-1)

= lim x->1 (1+2x+3x^2+...nx^(n-1) )

= 1 + 2 + 3 + ... + n

= n(n+1)/2


收錄日期: 2021-04-26 14:04:44
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110219000051KK01407

檢視 Wayback Machine 備份