Limit x1

2011-02-18 3:35 am

圖片參考:http://imgcld.yimg.com/8/n/HA00543461/o/701102170087713873381630.jpg

Limit x1
please help me~
更新1:

why lim(n->∞) [1 + 1/(n - 1) ]^(n - 1) * [1 + 1/(n - 1) ] =(e)(1)

回答 (1)

2011-02-18 3:53 am
✔ 最佳答案
40(a) R.H.S.

=1/ (1 + 1/(n-1) )

=1/[(n - 1 + 1)/(n-1)]

=(n - 1)/n

= 1 - 1/n

=L.H.S.

(b) lim(n->∞) (1 - 1/n)^(-n)

= lim(n->∞) {1/ [1 + 1/(n - 1) ]}^(-n) (by the result of (a))

= lim(n->∞) [1 + 1/(n - 1) }^n

= lim(n->∞) [1 + 1/(n - 1) ]^(n - 1) * [1 + 1/(n - 1) ]

= (e)(1)

= e

(c) lim(n->∞) (1 - 1/7n)^(n)

= lim(n->∞) {(1 - 1/7n)^(7n) }^(1/7)

= (1/e)^(1/7)





2011-02-19 16:28:24 補充:
lim(n->∞) [1 + 1/(n - 1) ]^(n - 1) = lim(n->∞) [1 + 1/n]^n = e


收錄日期: 2021-04-26 14:05:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110217000051KK00877

檢視 Wayback Machine 備份