✔ 最佳答案
a) lim (x → 0) [sin (x2)]/x
= lim (x → 0) x {[sin (x2)]/x2}
= lim (x → 0) x lim (x → 0) {[sin (x2)]/x2}
= 0 x 1
= 0
b) lim (x → ∞) [(x2 - 2x - 3)/(x2 - 3x - 28)] x
= lim (x → ∞) {[(x - 3)(x + 1)]/[(x - 7)(x + 4)]}x
= lim (x → ∞) [(x - 3)/(x - 7)]x lim (x → ∞) [(x + 1)/(x + 4)]x
= lim (x → ∞) [1 + 4/(x - 7)]x lim (x → ∞) [1 - 3/(x + 4)]x
= e4 x e-3
= e
c) lim (x → 0) (cos x)cot^2 x is an inderminate form of 1∞, so:
Let y = (cos x)cot^2 x, then ln y = cot2 x ln cos x
= (ln cos x)/tan2 x
which is an indertiminate form of 0/0 when lim (x → 0). So using L'Hospital Rule:
lim (x → 0) (ln cos x)/tan2 x
= lim (x → 0) (-tan x)/(2 tan x sec2 x)
= lim (x → 0) -1/(2 sec2 x)
= -1/2
So lim (x → 0) (ln y) = -1/2
lim (x → 0) y = e-1/2
lim (x → 0) (cos x)cot^2 x = e-1/2