Limit and Continuity of a Fun.

2011-02-14 3:04 am
1. Evaluate each of the following limits, if any.(a) lim sinx^2x→0 x (b) lim [(x^2 – 2x – 3) / (x^2 – 3x – 28)]^xx→0 (c) lim (cosx)^(cot2x)x→0 The answer of 1(a), (b) and (c) are 0, e and e^(-1 / 2) respectively.

回答 (2)

2011-02-14 3:34 am
✔ 最佳答案
a) lim (x → 0) [sin (x2)]/x

= lim (x → 0) x {[sin (x2)]/x2}

= lim (x → 0) x lim (x → 0) {[sin (x2)]/x2}

= 0 x 1

= 0

b) lim (x → ∞) [(x2 - 2x - 3)/(x2 - 3x - 28)] x

= lim (x → ∞) {[(x - 3)(x + 1)]/[(x - 7)(x + 4)]}x

= lim (x → ∞) [(x - 3)/(x - 7)]x lim (x → ∞) [(x + 1)/(x + 4)]x

= lim (x → ∞) [1 + 4/(x - 7)]x lim (x → ∞) [1 - 3/(x + 4)]x

= e4 x e-3

= e

c) lim (x → 0) (cos x)cot^2 x is an inderminate form of 1∞, so:

Let y = (cos x)cot^2 x, then ln y = cot2 x ln cos x

= (ln cos x)/tan2 x

which is an indertiminate form of 0/0 when lim (x → 0). So using L'Hospital Rule:

lim (x → 0) (ln cos x)/tan2 x

= lim (x → 0) (-tan x)/(2 tan x sec2 x)

= lim (x → 0) -1/(2 sec2 x)

= -1/2

So lim (x → 0) (ln y) = -1/2

lim (x → 0) y = e-1/2

lim (x → 0) (cos x)cot^2 x = e-1/2
參考: 原創答案
2011-02-14 3:20 am
(a) lim(x->0) (sinx)^2/x

= lim(x->0) [(sinx)/x][sinx]

= 1*0

= 0

(b) Take y = [(x^2 - 2x - 3) / (x^2 - 3x - 28)]^x

ln y = x ln[(x^2 - 2x - 3) / (x^2 - 3x - 28)]

lim(x->0) ln y

= 0*ln(-3/-28)

= 0

So lim(x->0) y = e or

lim(x->0) [(x^2 - 2x - 3) / (x^2 - 3x - 28)]^x = e

(c) Let y = (cosx)^[(cotx)^2]

lny = (cotx)^2 ln(cosx) = ln(cosx)/(tanx)^2

lim(x->0) lny

= lim(x->0) -sinx/[2cosxtanx(secx)^2]

= lim(x->0) -(cosx)^2/2

= -1/2

So, lim(x->0) (cosx)^[(cotx)^2] = e^(-1/2)



收錄日期: 2021-04-26 14:05:33
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110213000051KK01126

檢視 Wayback Machine 備份