Inequality

2011-02-11 5:51 am
Consider a quadratic function y = 3x^2 + (2 + k)x + 3k. If the value of y is greater than 18 for all real values of x, find the range of possible values of k.

Ans: 10 < k < 22

回答 (2)

2011-02-11 6:01 am
✔ 最佳答案
So to speak:

3x2 + (2 +k)x + 3k - 18 = 0 has no real roots and so:

(2 + k)2 - 4 x 3 (3k - 18) < 0

k2 + 4k + 4 - 36k + 216 < 0

k2 - 32k + 220 < 0

(k - 10)(k - 22) < 0

10 < k < 22

2011-02-10 22:16:11 補充:
加插多一句:

For a curve y = 3x^2 + (2 +k)x + 3k - 18, it is opening upward and therefore, in case if the equation 3x^2 + (2 +k)x + 3k - 18 = 0 has no real roots, we can ensure that 3x^2 + (2 +k)x + 3k - 18 > 0 for all real values of x.
參考: 原創答案
2011-02-11 6:05 am
你所用的方法並不嚴謹
discriminant < 0
跟住solve inequality
done~
雖然答案有比到你,
但係你有沒有諗過10<22 可能會同range of y (y > 18) 有contradiction?

2011-02-10 22:12:07 補充:
10 < k < 22 不是 10 < 22 :P


收錄日期: 2021-04-23 18:31:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110210000051KK01767

檢視 Wayback Machine 備份