數學!factional問題

2011-02-08 5:13 am
{[(k+1)!]^2 (k^2)!} / {(k!)^2 [(k+1)^2]!}=??

詳細呀!~~~

THX~!!!!!!
更新1:

ANS: 1/{(k^2 +1)(k^2 +2)(k^2 +3)...(k^2 +2k)}

回答 (2)

2011-02-08 5:39 am
✔ 最佳答案
{[(k+1)!]^2 (k^2)!} / {(k!)^2 [(k+1)^2]!}=??Sol{[(k+1)!]^2 (k^2)!} / {(k!)^2 [(k+1)^2]!}={[(k+1)!]^2/ (k!)^2}*{(k^2)!/[(k+1)^2]!}={k!*k!*(k+!)*(k+1)/(k!)^2}*{(k^2)!/[k!*k!*(k+1)*(k+1)]}=(k+!)*(k+1)*{1/[(k+1)*(k+1)]}=1
2011-02-08 7:26 am
[(k+1)!]² (k²)!
-------------------
(k!)² [(k+1)²]!

=

(k!)² (k+1)² (k²)!
--------------------------
(k!)² (k² + 2k + 1)!

=

2011-02-07 23:26:14 補充:
(k+1)² (k²)!
---------------------------------------------
(k²)! (k²+1) (k²+2) ... (k²+2k+1)


=

(k²+2k+1) (k²)!
-----------------------------------------------------
(k²)! (k²+1) (k²+2) ... (k²+2k)(k²+2k+1)

=

1 / [(k^2 +1)(k^2 +2)(k^2 +3)...(k^2 +2k)]


收錄日期: 2021-04-21 22:18:59
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110207000051KK01424

檢視 Wayback Machine 備份