pure integration

2011-02-07 10:33 pm
show that if alpha is an acute angle





圖片參考:http://imgcld.yimg.com/8/n/HA00109587/o/701102070065413873377910.jpg

回答 (1)

2011-02-07 10:55 pm
✔ 最佳答案
∫ 1/(x^2 + 2cosαx + 1) dx

= ∫ 1/[(x + cosα)^2 + (1 - cos^2α)] dx

= ∫ 1/[(x + cosα)^2 + (sin^2α)] dx

Let y = x + cosα. When x = 0, y = cosα. When x = 1, y = 1 + cosα

So ∫ 1/(x^2 + 2cosαx + 1) dx

= ∫ 1/[y^2 + (sin^2α)] dy [from cosα to 1 + cosα]

= [1/sinα]arctan(y/sinα) |[cosα, 1 + cosα]

= [1/sinα]{arctan[(1 + cosα)/sinα] - arctan(cosα/sinα)}

= [1/sinα]arctan{[(1 + cosα)/sinα - (cosα/sinα)]/[(1 + cosα)/sin^2α]}

= [1/sinα]arctan[sinα/(1 + cosα)]

= [1/sinα]arctan[2sin(α/2)cos(α/2)/2cos^2(α/2)]

= (1/sinα)(α/2)

= α/(2sinα)


收錄日期: 2021-04-26 14:44:00
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110207000051KK00654

檢視 Wayback Machine 備份