✔ 最佳答案
2 π r + 4s = 10
s = ( 10 - 2 π r ) / 4
A = π r^2 + s^2
A = π r^2 + ( 10 - 2 π r ) ^2 / 16
A = [ 16 π r^2 + ( 100 - 40 π r + 4 π^2 r^2 ) ] / 16
A = [ ( 16π + 4 π^2 ) r^2 - 40 π r + 100 ] / 16
A' = 1/16 [ 2( 16π + 4 π^2 ) r - 40π ]
A' = π/16 [ 8( 4 + π ) r - 40 ]
A' = 0 when 8( 4 + π ) r = 40
A' = 0 when r = 5 / ( 4 + π )
A" = π( 4 + π )/2 > 0
Hence, A is min. when r = 5 / ( 4 + π )
==============================
Corresponding s = ( 10 - 2 π r ) / 4
s = 1/4[ 10 - 10π / ( 4 + π ) ]
s = 10 / ( 4 + π )
=============
A = π r^2 + s^2
Min A = 25π / ( 4 + π )^2 + 100 / ( 4 + π )^2
Min A = 25( 4 + π ) / ( 4 + π )^2
Min A = 25 / ( 4 + π )
Hence, the min. area is [ 25 / ( 4 + π ) ] m^2
======================================
Hope I have answered the question correctly.
參考: Mathematics Teacher Mr. Ip