Rate of change

2011-01-19 9:12 pm
Water is pumped out at a rate if 3 m^2/min from a hemisphere water tank with radius 13m. When the depth of water is x m, the volume of water inside the tank is (π/3)x^2(39-x) m^3. At what rate is the water level dropping when the depth of water is 8m?

Ans: 1/48π m/min

回答 (1)

2011-01-19 9:25 pm
✔ 最佳答案
V=(π/3)x^2(39-x)
V=(π/3)(39x^2-x^3)

Differentiate both sides w.r.t. t
dV/dt=(π/3)(39*2x*(dx/dt)-3x^2*(dx/dt))
dV/dt=(π/3)(78x-3x^2)(dx/dt)
-3=(π/3)*432*(dx/dt)
dx/dt=-1/48π m/min

2011-01-19 16:08:38 補充:
For step3, just sub. x=8 and dV/dt=-3

2011-01-19 20:10:10 補充:
Yes........................


收錄日期: 2021-04-22 00:52:26
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110119000051KK00381

檢視 Wayback Machine 備份