Basic Vector Question

2011-01-19 5:08 pm
a) Consider the following triangle

圖片參考:http://imgcld.yimg.com/8/n/HA00425268/o/701101190014613873371290.jpg

By dropping a perpendicular from the vertex with angle to the base, use trigonometry to show that:

c = a cos β + b cos α

b) It can similarly be deduced that
a = c cos β + b cos γb = c cos α + a cos γ
(no derivation is required).
Regard the above as three linear equations in unknowns cos α , cosβ
and cosγ, with a; b and c considered as known. By forming an aug-
mented matrix, solve for cosγ to show that:

圖片參考:http://imgcld.yimg.com/8/n/HA00425268/o/701101190014613873371301.jpg

c) Consider now the diagram


圖片參考:http://imgcld.yimg.com/8/n/HA00425268/o/701101190014613873371302.jpg

Identify IIuII, IIvII and IIu - vII with a; b; c in the first diagram, and use the fact that

圖片參考:http://imgcld.yimg.com/8/n/HA00425268/o/701101190014613873371313.jpg

to deduce from (b) that



圖片參考:http://imgcld.yimg.com/8/n/HA00425268/o/701101190014613873371324.jpg

回答 (2)

2011-01-19 10:20 pm
✔ 最佳答案
(a) Draw a perpendicular line from the vertex with angle γ to the base c.Then c will be devided in two parts. Let the left part is x and the right part is y

cosβ = x/a => x = acosβcosα = y/b => y = bcosαc = x + y = acosβ + bcosα(b) c = acosβ + bcosα...(1)a = ccosβ + bcosγ...(2)b = ccosα + acosγ...(3)From (2)cosγ = (a - ccosβ)/b= {a - c[(c - bcosα)/a]}/b= [a^2 - (c^2 - cbcosα)]/(ab)= {a^2 - [c^2 - cb(b - acosγ)/c]}/(ab)= {a^2 - [c^2 - (b^2 - abcosγ)]}/(ab)= (a^2 + b^2 - c^2 + abcosγ)/(ab)So, cosγ = (a^2 + b^2 - c^2)/(2ab)(c) Let a = ||u||, b = ||v||, c = ||u-v||a^2 + b^2 - c^2 = ||u||^2 + ||v||^2 - ||u-v||^2= 2||u||.||v||ab = ||u||||v||So, cosγ = (a^2 + b^2 - c^2)/(2ab)= (2||u||.||v||)/(2||u||||v||)= ||u||.||v||/(||u||||v||)
2011-01-19 8:56 pm
參考: myself


收錄日期: 2021-04-26 14:03:47
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110119000051KK00146

檢視 Wayback Machine 備份