integration(7)

2011-01-16 6:04 pm
∫ ln(3-x) dx=xln(3-x)- ∫x d[ln(3-x)]=xln(3-x)+ ∫x/(3-x) dx跟住點做?

回答 (2)

2011-01-16 7:08 pm
✔ 最佳答案
∫ln(3-x)dx

= xln(3-x)dx - ∫xd[ln(3-x)]

= xln(3-x)dx - ∫[-x/(3-x)]dx

= xln(3-x)dx - ∫[(3-x)/(3-x)]dx + ∫[3/(3-x)]dx

= xln(3-x)dx - ∫dx - 3∫[1/(3-x)]d(3-x)

= xln(3-x) - x - 3ln(3-x) + C

= (x-3)ln(3-x) - x + C

2011-01-16 11:32:30 補充:
Alternative method:
Use the rule of integration: ∫lnxdx = xlnx - x + C

∫ln(3-x)dx
= -∫ln(3-x)d(3-x)
= -[(3-x)ln(3-x) - (3-x) + C']
= -[(3-x)ln(3-x) + x - (3 - C')]
= (x-3)ln(3-x) - x + C
參考: micatkie, micatkie
2011-01-17 1:09 am


收錄日期: 2021-04-13 17:46:20
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110116000051KK00212

檢視 Wayback Machine 備份