F5 tangent of circle20mark

2011-01-16 5:51 am

圖片參考:http://imgcld.yimg.com/8/n/HA00763813/o/701101150128913873369820.jpg

In the figure, AC touches the two circles at A and C respectively. B is a point on AC and BD is the common tangent to the two circles at D.Prove that
a) AB = BC
b) ∠ADC =90°

回答 (2)

2011-01-16 6:01 am
✔ 最佳答案
a)AB = BD (tangent properties) BD = BC (tangent properties) So AB = BC
b)ㄥBAD = ㄥBDA (base ∠s, isos. Δ)ㄥBDC = ㄥBCD (base ∠s, isos. Δ)On the other hand ,ㄥBAD + (ㄥBDA + ㄥBDC) + ㄥBCD = 180° (ㄥ sum of △)(ㄥBAD + ㄥBDA) + (ㄥBDC + ㄥBCD) = 180°2ㄥBDA + 2ㄥBDC = 180°ㄥBDA + ㄥBDC = 90°ㄥADC =90°
2011-01-16 6:03 am
(a) Consider the small circle

AB = BD (tangent properties)

Then consider the large circle

BC = BD (tangent properties)

So AB = BC

(b)

∠ BAD = ∠ BDA and ∠ BCD = ∠ BDC

Since ∠ BAD + ∠ BDA + ∠ BCD + ∠ BDC = 180

2 ( ∠ BDA + ∠ BDC ) = 180

∠ BDA + ∠ BDC = 90

∠ ADC = 90


收錄日期: 2021-04-21 22:20:13
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110115000051KK01289

檢視 Wayback Machine 備份