integration(3)

2011-01-16 5:31 am
∫ (ln x)^2 dx
更新1:

我咁樣做但係卡住左 Let u=lnx dx=x du ∫ (ln x)^2 dx =∫ (x)(u^2) du 我咁做又岩5岩?

回答 (1)

2011-01-16 5:44 am
✔ 最佳答案
∫ (ln x)^2 dx

= x(ln x)^2 - ∫ x d(ln x)^2

= x(ln x)^2 - 2 ∫ x(ln x)(1/x) dx

= x(ln x)^2 - 2 ∫ (ln x) dx

= x(ln x)^2 - 2[ x(ln x) - ∫ 1 dx ]

= x(ln x)^2 - 2x(ln x) + 2x + C

where C is a constant








收錄日期: 2021-04-19 23:53:19
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110115000051KK01260

檢視 Wayback Machine 備份