integration

2011-01-15 7:37 pm
1) ∫ sin3x cos7x dx2) ∫ x cos2(2x2) dx Please detail steps!
更新1:

=(1/4) ∫ cos^2 u du 點去 = (1/8) ∫ (1 + cos 2u) du ??

回答 (1)

2011-01-15 7:45 pm
✔ 最佳答案
1) ∫ sin 3x cos 7x dx

= (1/2) ∫ [sin (3x + 7x) + sin (3x - 7x)] dx

= (1/2) ∫ [sin 10x + sin (- 4x)] dx

= (1/2) ∫ sin 10x - sin 4x) dx

= (1/2) [-(1/10) cos 10x + (1/4) cos 4x] + C

= (1/8) cos 4x - (1/20) cos 10x + C

2) Sub u = 2x2, then du = 4xdx and hence:

∫ x cos2 (2x2) dx = (1/4) ∫ 4x cos2 u dx

= (1/4) ∫ cos2 u du

= (1/8) ∫ (1 + cos 2u) du

= (1/8) [u + (sin 2u)/2] + C

= u/8 + (sin 2u)/16 + C

2011-01-15 11:46:59 補充:
Q2 cont'd

u/8 + (sin 2u)/16 + C

= (x^2)/4 + [sin (4x^2)]/16 + C
參考: 原創答案


收錄日期: 2021-04-19 23:51:53
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110115000051KK00351

檢視 Wayback Machine 備份