m2 chap.0 function

2011-01-10 2:56 am
let y =f(x) be a function such that for any real numbers a and b, f(ab)=f(a)+f(b)
(a)find the values of f(1) and f(-1) ans: both 0
(b) hence prove that y=f(x) is an even function


please show clear steps thx
更新1:

actually why f(1)=0?

回答 (2)

2011-01-10 3:21 am
✔ 最佳答案
I can help to answer your Q.

(a) Put both a = b = 1

f( 1 x 1 ) = f( 1 ) + f ( 1 )

f( 1 ) = 2 f( 1 )

f( 1 ) = 0
======

Put a = -1 and b = -1

f( -1 x -1 ) = f( -1 ) + f ( -1 )

f( 1 ) = 2 f( -1 )

0 = 2 f( -1 )

f( -1 ) = 0
=======


(b) Show f( -ab ) = f( ab ) for all real a and b.

f( -ab ) = f( a ) + f( -b )

f( -ab ) = f( a ) + f( -1b )

f( -ab ) = f( a ) + f( -1 ) + f( b )

f( -ab ) = f( a ) + f( b ) + f( -1 )

f( -ab ) = f( ab ) + 0

f( -ab ) = f( ab )

Hence, f is even
=============


Hope I can help you.




參考: Mathematics Teacher Mr. Ip
2011-01-10 3:16 am
(a) f(1*1)=f(1)+f(1)
f(1)=f(1)+f(1)
f(1)=0

f(1*-1)=f(1)+f(-1)
f(-1)=0+f(-1)
f(-1)=0

(b) Now f(-1*x)=f(-1)+f(x)
f(-x)=f(x) [by the result of (a)]
So, y=f(x) is an even function

2011-01-10 23:34:50 補充:
f(1)=f(1)+f(1)
f(1)-f(1)=f(1)+f(1)-f(1)
0=f(1)


收錄日期: 2021-04-26 14:03:30
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110109000051KK00958

檢視 Wayback Machine 備份