Find the max area or rectangle

2011-01-03 12:55 am

圖片參考:http://imgcld.yimg.com/8/n/HA00837720/o/701101020090213873435400.jpg
in the figure,a rectangle of dimensions x cm by y cm is inscribed in the right-angled triangle ABC.AB=4 cm and BC=8 cm.Find the maximum area of the rectangle.

回答 (3)

2011-01-03 1:07 am
✔ 最佳答案
Using similar triangle,
y/8 = (4-x)/4
y = 8 - 2x

So area of rectangle = xy
= x(8 - 2x)
= -2(x^2 - 4x)
= -2(x^2 - 4x + 4 - 4)
= -2(x - 2)^2 + 8
Thus the maximum area is 8cm^2
參考: me
2011-01-03 1:22 am
The key point is to find out the relation between x and y.

Since triangle ADE is similar to the triangle DCF

DE/CF=AE/CF

x/(8-x)=(4-y)/y
xy=(8-x)(4-y)
xy=32-4x-8y+xy
4x+8y=32
x+2y=8
x=8-2y

Now the Area of the rectangle is xy
=y(8-2y)
=-2y^2+8y
=-(y-4)^2+16

which attains the maximum value 16 when y=4. So, the maximum area of the rectangle is 16 cm^2.

2011-01-02 17:24:33 補充:
Some mistakes Sorry

=y(8-2y)
=-2y^2+8y
=-2(y-4)^2+8

which attains the maximum value 8 when y=4. So, the maximum area of the rectangle is 8 cm^2.
2011-01-03 1:14 am
Sol
(4-x):4=y:8
4y=8(4-x)
y=2(4-x)
y=8-2x
xy=x(8-2x)
=-2x^2+8x
=-2(x^2-4x)
=-2(x^2-4x+4)+8
=-2(x-2)^2+8
0<4
-2<2
0<=(x-2)^2<4
-4<-(x-2)^2<=0
-8<=-2(x-2)^2<=0
0<-2(x-2)^2+8<=8
0<=8
max=8


收錄日期: 2021-04-26 14:04:54
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20110102000051KK00902

檢視 Wayback Machine 備份