~~三角證明題~~

2010-12-29 2:08 am
在 △ABC 中 , ㄥA = 60° , 求證 :

1/(a+b) + 1/(a+c) = 3/(a+b+c)

回答 (2)

2010-12-29 2:17 am
✔ 最佳答案
1/(a+b) + 1/(a+c) = 3/(a+b+c)

<=> 1/(a+b) - 1/(a+b+c) + 1/(a+c) - 1/(a+b+c) = 1/(a+b+c)

<=> c/(a+b)(a+b+c) + b/(a+c)(a+b+c) = 1/(a+b+c)

<=> c/(a+b) + b/(a+c) = 1

<=> c(a+c) + b(a+b) = (a+b)(a+c)

<=> c^2 + b^2 = a^2 + bc

<=> (c^2 + b^2 - a^2)/(2bc) =1/2

<=> cos ㄥA =1/2

<=> ㄥA = 60°


2010-12-29 2:21 am
cosine law: a^2=b^2+c^2-bc,
a^2+bc=b^2+c^2, then (a+b)(a+c)=b(a+b)+c(a+c)
hence, 1= c/(a+b) + b/(a+c)
3= 1+ c/(a+b) + 1+ b/(a+c)
3= (a+b+c)/(a+b) + (a+b+c)/(a+c)
3/(a+b+c) = 1/(a+b) + 1/(a+c)


收錄日期: 2021-04-12 00:07:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101228000051KK01169

檢視 Wayback Machine 備份