F4 M1 Binomial Expansion 20x2點

2010-12-25 8:17 am
1. Expand the following in the ascending power of x as far as the term in x^4.
以升冪序展開下列算式直至x^4項。

1a. (3x^2 - 2 )^4

1b. (2x+1/x)^3

1c. Expand (3x^2 - 2)^4 (2x+1/x)^3 in ascending powers of x as far as the term in x^2.
以升冪序展開 (3x^2 - 2)^4 (2x+1/x)^3 直至x^2項。

-

2a. Expand (1-ax)^5(x+2)^8 in ascending powers of x as far as the term in x^2.
以升冪序展開(1-ax)^5(x+2)^8 直至x^2項。

2b. If the coefficient of x is -1536, find the possible value of a.
若x的系數為-1536,求a的可取值。

-

3. (px^2+1/x)^k is expanded in descending powers of x, where k is a positive integer and p>10. If the 5th term of the expansion is independent of x and is equal to 135, find the values of p and k.
設k為正整數,且p>0。在 (px^2+1/x)^k 以解冪序的展式中,若其第五項不含x且等於135,求p及k的值。

-

最好用英文答,但中文都冇所謂
唔該晒你地:'(
要有埋 Step,十萬感激,40點。


更新1:

點都要幫我解決第2a同埋3 /_\ 唔該晒

回答 (2)

2010-12-25 5:18 pm
✔ 最佳答案
http://img189.imageshack.us/img189/4069/23049201.png

圖片參考:http://img189.imageshack.us/img189/4069/23049201.png


2010-12-25 09:38:54 補充:
對了,1a: 16 - 96x^2 + 216x^4
1c : 16/x^3 + 96/x +192x -96/x - 576x + 216x
= 16/x^3 - 168x
2010-12-25 5:33 pm
1a 應是: 16 - 96x^2 + 216x^4 + ...
1c 應是: 16/x^3 - 168x + ...


收錄日期: 2021-04-23 23:26:17
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101225000051KK00014

檢視 Wayback Machine 備份