binomial theorem!

2010-12-23 5:44 am
In the expansion of [ax+(2/x^2)]^n, the 3rd term in descending powers of x is (15/4), where n is a positive integer and a<0. Find the values of n and a.

回答 (1)

2010-12-23 6:04 am
✔ 最佳答案
In theexpansion of [ax+(2/x^2)]^n,the 3rd term in descending powersof x is (15/4),
where n is a positive integer and a<0,Find the values of n and a.
Sol
[ax+(2/x^2)]^n
=(ax)^n+c(n,1)*(ax)^(n-1)*(2/x^2)^1+c(n,2)*(ax)^(n-2)*(2/x^2)^2+….
So
c(n,2)*(ax)^(n-2)*(2/x^2)^2=15/4
x^(n-2)*x^(-4)=x^0
n-6=0
n=6
c(6,2)*a^(6-2)*2^2=15/4
15*a^4*4=15/4
a^4=1/16
a<0
a=-1/2




收錄日期: 2021-04-19 23:43:38
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101222000051KK01097

檢視 Wayback Machine 備份