✔ 最佳答案
Using integration by parts,
∫ ln(5x^2) dx
=xln(5x^2) - ∫ x d[ln(5x+2)]
=xln(5x^2) - ∫ 5x/(5x+2) dx
=xln(5x^2) - ∫ 1 - 2/(5x+2) dx
=xln(5x^2) - [ x - 2(1/5)ln(5x+2)]+C
=(x+2/5)ln(5x+2) - x + C
2010-12-22 13:00:03 補充:
Sorry..Typing mistake in calculation..
∫ ln(5x^2) dx
=xln(5x^2) - ∫ x d[ln(5x^2)]
=xln(5x^2) - ∫ x [10x/5x^2] dx
=xln(5x^2) - ∫ 2 dx
=xln(5x^2) - 2x + C
=x [ln(5x^2)-2] + C