amaths . integration

2010-12-19 6:33 am
using the substitution

X = √3 tanθ
∫ 1/(x^2+3) dx (上限3,下限0)

remark:d/dθ(tanθ)=sec^2 θ
更新1:

2.find the volume of the solid generated by resolving the curve y=x^2 about the x-axis from x=1 to x=2

更新2:

pi = π ?? Q2。點解一開始就要比π?? Q1。+3有左?? =1/√3 ∫[0,π/3] dθ,冇未知數?0 and π/3點代入?

回答 (2)

2010-12-19 7:08 am
✔ 最佳答案
1. ∫[0,3]1/(x^2+3) dx
=∫[0,pi/6] 1/(3sec^2 θ) (√3sec^2 θ)dθ
=∫[0,pi/6] dθ
=pi/6

2. volume of solid
=pi ∫[1,2](x^2)^2dx
=pi ∫[1,2] x^4 dx
=pi (2^5-1^5)
=31pi

2010-12-18 23:16:52 補充:
Correction of Q1:
x=√3 tanθ
dx=√3sec^2 θ dθ
when x=3, tanθ=√3, θ=pi/3
∫[0,3]1/(x^2+3) dx
=∫[0,pi/3] [1/(3sec^2 θ)] (√3sec^2 θ dθ)
=∫[0,pi/3] dθ
=pi/3

2010-12-18 23:32:10 補充:
Q1
x=√3 tanθ
dx=√3sec^2 θ dθ
when x=3, tanθ=√3, θ=pi/3
∫[0,3]1/(x^2+3) dx
=∫[0,pi/3] [1/(3sec^2 θ)] ( √3 sec^2 θ dθ)
=1/√3 ∫[0,pi/3] dθ
=√3pi/9

Q2
volume of solid
=pi ∫[1,2](x^2)^2dx
=pi ∫[1,2] x^4 dx
=pi (2^5-1^5)/5
=31pi/5

thx 自由自在~
I am so careless...

2010-12-19 16:40:27 補充:
是, pi = π

Q2
條公式係一開始就有..
你可以去呢度睇下
http://en.wikipedia.org/wiki/Solid_of_revolution

Q1
∫[0,π/3] dθ 的意思是IN果舊野係1, 1省略唔寫
∫[0,π/3] dθ= ∫[0,π/3] 1 dθ
IN 完好自然係π/3
再乘番1/√3
答案=√3π/9
2010-12-19 7:20 am
(1) (√3 π)/9
(2) 31π/5


收錄日期: 2021-04-23 23:23:25
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101218000051KK01342

檢視 Wayback Machine 備份