中二級數學2條(須有詳細步驟)

2010-12-18 4:06 am
1) If Ax+Bx(x+2)+C(x+2)^2 ≡ 2x^2+6x-4 , is an identity, then what are the values of B and C ?

2) If 4x-5 ≡ (P-1)x+Q, where P and Q are constants, find the values of P and Q.

回答 (3)

2010-12-18 4:34 am
✔ 最佳答案
1. L.H.S. = Ax + Bx(x+2) + C(x+2)^2
= Ax + Bx^2 + 2Bx + C(x^2 + 4x + 4)
= Bx^2 + Ax + 2Bx + Cx^2 + 4Cx + 4C
= (B+C)x^2 + (A+2B+4C)x + 4C
Hence, (B+C)x^2 + (A+2B+4C)x + 4C ≡ 2x^2 + 6x - 4
Comparing the coefficients,
We have,
B + C = 2 ---(1)
A + 2B + 4C = 6 ---(2)
4C = -4 --- (3)
From (3), C = -1
Put C = -1 into (1),
B + (-1) = 2
B = 3
Put B = 3 and C = -1 into (2),
A + 2(3) + 4(-1) = 6
A = 5

2. Comparing the coefficients,
4 = P - 1
P = 5
Q = -5
參考: Knowledge is power.
2010-12-18 6:16 pm
1)If Ax+Bx(x+2)+C(x+2)^2≡2x^2+6x-4,is an identity,then what are the values
of B and C ?
Sol
Ax+Bx(x+2)+C(x+2)^2≡2x^2+6x-4
When x=-2
-2A=8-12-4
A=4
4x+Bx(x+2)+C(x+2)^2≡2x^2+6x-4
Bx(x+2)+C(x+2)^2≡2x^2+2x-4
Bx+C(x+2)≡2x-2
When x=-2
-2B=-4-2
B=3
3x+C(x+2)=2x-2
C(x+2)=-x-2
C=-1

2)If 4x-5≡(P-1)x+Q,where P and Q are constants,find the values of P and Q.
Sol
4x-5=(P-1)x+Q
When x=0
-5=Q
4x-5=(P-1)x-5
P-1=4
P=5


2010-12-18 4:19 am
1.A=2,B=6

2.P=4,Q=1


收錄日期: 2021-04-25 17:08:21
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101217000051KK00868

檢視 Wayback Machine 備份