Prove, by mathematical induction, that x^(n+2) + (x+1)^(2n+1) is divisible by (x^2) + x + 1 for all positive integers n.
更新1:
請問可唔可以解下 x * x^(k+2) + (x^2 + 2x + 1) * (x+1)^(2k+1) 點變做 x * x^(k+2) + x * (x+1)^(2k+1) + (x^2 + x + 1) * (x+1)^(2k+1) 我唔明點解將(x+1)^2變做x^2+2x+1後 之後果行變左做x * x^(k+2) + x * (x+1)^(2k+1) + (x^2 + x + 1) * (x+1)^(2k+1) thz