✔ 最佳答案
1 - 1/2 + 1/3 - 1/4 + ... + 1/2009 - 1/2010 <1>
1/1006 + 1/1007 + ... + 1/2009 + 1/2010 <2>
<2> - <1>
= 2( 1/1006 + 1/1008 + 1/1010 + ... + 1/2010) - (1- 1/2 + 1/3 - ... +1/1005)
= ( 1/503 + 1/504 + 1/505 +...+ 1/1005) - (1- 1/2 + 1/3 - ... +1/1005)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/501 + 1/502) + 2(1/504 + 1/506+...+1/1004)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/501 + 1/502) + (1/252 + 1/253 +... +1/502)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/251) + 2(1/252 + 1/254 + 1/256 +...+1/502)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/125) + 2(1/126 + 1/128+...+1/250)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/61 + 1/62 ) + 2(1/64 +1/66 ...+1/124)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/31) + 2(1/32+ 1/34 + ...+1/62)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/15) + 2( 1/16 + 1/18 +...+1/30)
= (-1 + 1/2 - 1/3 + 1/4 - ... - 1/7) + 2(1/8 + 1/10 +... + 1/14)
=(-1 + 1/2 - 1/3 ) + 2(1/4+1/6)
= 0
所以兩式是相等的!
2010-12-12 15:59:45 補充:
我倒想知道 有沒有更快捷的方法去計算......