因式分解的數學問題

2010-12-07 2:21 am
設f(x)=ax^3+39x^2-243,其中a為一常數。已知x+3為f(x)的因式,
(i)求a值
(ii)因式分解f(x)。

a值是4,
我的老師教我地用代入的方法黎做因式分解,
例:
x+3--->x=-3
f(-3)=4(-3)^3+39(-3)^2-243=0
只要計到0出黎就係佢的因式,
但係呢題我發現不能找到3個數能將佢完全除盡。
答案係(x+3)(x+9)(4x-9),
點樣先可以計到呢個答案出黎?
用咩方法好d?
唔該曬~

回答 (1)

2010-12-07 2:43 am
✔ 最佳答案
You can use the method of long division,Knowing that x+3 is a factor of 4x^3+39x^2-243,_________4x^2 + 27x -81x+3)4x^3+39x^2 - 243___)4x^3+12x^2_________27x^2+ 0x
_________27x^2+81x
______________-81x-243______________-81x-243You now get the other factor 4x^2+27x-81And it can be further factorized to (x+9)(4x-9)

You will save a lot of time using this method instead of finding all 3 actors!!

2010-12-09 12:59:23 補充:
上面講緊既係長除法,
它的原理是
因為知(x+3)是4x^3+39x^2-243的因式,
所以4x^3+39x^2-243=(x+3)q(x) [q(x)為一多項式]
透過長除便可知q(x)是什麼


收錄日期: 2021-04-13 17:41:08
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101206000051KK01078

檢視 Wayback Machine 備份