化簡、恆等式

2010-11-21 7:49 pm
全部都要連式
3/4+(x+1/2)^2=x^2+x+1是不是恆等式
AB=4cm,BC=5cm,CD=6cm,AD=7cm
3/4+(x+1/2)^2=x^2+x+1是不是恆等式
(2x+3)^2
(2-5y)^2
(2a+3b)^2
49-m^2
100r^2-49s^2
27a^2-2b^2
-18(a+1)^2
化簡
3x^2y^3/ 21xy^4
2a-4b/2b-a
3b/5a^2城a/b [城=x]
4x^2/6y^3÷12x/2y^2
2a-4b/3a+6b城10b+5a/6b-3a

回答 (1)

2010-11-21 8:44 pm
✔ 最佳答案
(3/4) + [x + (1/2)]² = x² + x + 1 是不是恆等式?

左式 = (3/4) + [x + (1/2)]²
= (3/4) + [x² + x + (1/4)]
= (3/4) + x² + x + (1/4)
= x² + x + 1
= 右式

上式是恆等式。
(但若題目是(3/4) + [(x + 1)/2]² = x² + x + 1 則不是恆等式。)


=====
AB = 4cm, BC = 5cm, CD = 6cm, AD = 7cm
你想問甚麼?


=====
(3/4) + [x + (1/2)]² = x² + x + 1 是不是恆等式?

答案如第一題。


=====
(2x + 3)²
= (2x)² + 2(2x)(3) + (3)²
= 4x² + 12x + 9


=====
(2 - 5y)²
= (2)² - 2(2)(5y) + (5y)²
= 4 - 20y + 25y²


=====
(2a + 3b)²
= (2a)² + 2(2a)(3b) + (3b)²
= 4a² + 12ab + 9b²


=====
49 - m²
= 7² - m²
= (7 + m)(7 - m)


=====
100r² - 49s²
= (10r)² - (7s)²
= (10r + 7s)(10r - 7s)


=====
27a² - 3b² (題目 2b² 應為 3b²)
= 3(9a² - b²)
= 3[(3a)² - b²]
= 3(3a + b)(3a - b)


=====
-18(a + 1)²
= -18(a² + 2a + 1)
= -18a² - 32a - 32


=====
3x²y³/21xy⁴
= x/7y


=====
(2a - 4b)/(2b - a)
= -(4b - 2a)/(2b - a)
= -2(2b - a)/(2b - a)
= -2


=====
(3b/5a²) * (a/b) [* = 乘號]
= 3ab/5a²b
= 3/5a


=====
(4x²/6y³) ÷ (12x/2y²)
= (4x²/6y³) * (2y²/12x)
= 8x²y²/72xy³
= x/9y


=====
(2a - 4b)/(3a + 6b) * (10b + 5a)/(6b - 3a)
= 2(a - 2b)/3(a + 2b) * 5(2b + a)/3(2b - a)
= 2(a - 2b)/3(a + 2b) * 5(a + 2b)/[-3(a -2b)
= 10(a - 2b)(a + 2b)/(-9)(a + 2b)(a - 2b)
= -10/9
參考: 土扁


收錄日期: 2021-04-13 17:40:32
原文連結 [永久失效]:
https://hk.answers.yahoo.com/question/index?qid=20101121000051KK00425

檢視 Wayback Machine 備份